Applied Quantum Chemistry Calculations

Igor J. Eberstein/587 April 29, 2004B

Robert H. Goddard

- It is difficult to say what is impossible, for the dream of yesterday is the hope of today and the reality of tomorrow.
- Applied Quantum mechanics fits the above quote superbly well.

Applied Quantum Mechanics

- The dream of yesterday: Use quantum mechanics to understand spectroscopic data.
- The hope of today: Calculate atomic and molecular properties on a sub-microscopic level using the Schroedinger equation
- The reality of tomorrow: Use quantum mechanical calculations to solve practical engineering problems.

Programmatic Usefulness

- Lasers in Space: Problems with mirrors and windows are initiated on the molecular level.
- Infrared Studies of Planetary Atmospheres: Calculation of dipole and multipole moments, transition probabilites, and infrared absorption and emission observed by spacecraft studying Mars, Saturn, Titan, especially on the Cassini mission.

The dream of yesterday

- Spectra occur when light is passed through a prism. Remember VIBGYOR.
- When light passes through a gas before going through a prism, then you get a characteristic spectral signature which looks like a bar code.
- Spectroscopic data were not understood before the advent of quantum mechanics

The Einstein Equation

- The photo-electric effect:
- E=hv
- The energy of electrons emitted from a hot metal surface depends only on the frequency of the light, but not on its intensity.
- Physicists now knew that spectral frequencies were related to energies, but they did not know what the relationship was.

The Bohr Model of the Hydrogen Atom

Niels Bohr lived in Denmark, the home of the famous astronomer Tyho Brahe

The Time-Independent Schrödinger Wave Equation in One-Dimension

 $[(-h^2/8\pi^2m)d^2/dx^2 + V(x)] \psi(x) = E \psi(x)$

Horizontal Position in the Well

Schroedinger Equation

- The Schroedinger equation is an eigenvalue equation which may be written as:
- HX=E(n)X
- Where H is the Hamiltonian
- E(n); n=1,2,3,... are the eigen-energies which make up the spectral signature.

The Hope of Today

• Calculate atomic and molecular properties on a sub-microscopic level using using the Schroedinger equation

Radial coordinates

U(r) = a/r, where a is a constant

Solution to the Schrödinger Equation for a Hydrogen Atom

The 1s wavefunction (Ground state)

Three-Body Problem

- Three-body problem requires numerical solution
- Born-Oppenheimer approximation assumes that electrons instantaneously adjust themselves to the positions of the nuclei.
- Hartree-Fock method represents the simplest numerical solution to a multi-body problem

Fourier Series

- •Any function can be approximated by Fourier series (Fourier series is made up of sine waves).
- Fourier series is the simplest basis set.
- More complicated basis sets will be shown later.

Slater Type Orbital (Exponential)

```
Basis Function = N * e<sup>(-alpha * r)</sup>
where:
N = normalization constant
alpha = orbital exponent
```

r = radius in angstroms

Gaussian Type Functions

Basis Function = $N * e^{(-alpha * r^2)}$

Calculation Parameters

- 1) **Ab-initio approach** and in particular, **Hartree-Fock method [Self-Consistent Field (SCF)].**
- 2) STO (Slater Type Orbital)-3G basis sets.
- 3) For make the calculations easier, STO is approximated by Gaussian functions. (ex. 6-31G*)

Quantum Chemistry Calculations

 $[(-h^2/8\pi^2m)d^2/dx^2 + V(x)] \psi(x) = E \psi(x)$

Ashley Thrall, Vassar College '04

Dr. Igor Eberstein, Advisor

What are Quantum Chemistry Calculations?

It is the calculation of atomic and molecular properties on a sub-microscopic level using the Schrödinger equation.

Gaussian98

- Given the molecular structure, Gaussian98 can
 - Calculate the solution to the Schrödinger wave equation (ψ) the probability distribution of the electrons
 - Use this solution to calculate important qualities of the molecule, such as its energy
- Uses basis sets comprised of Gaussian functions to perform these calculations

Potential Energy of a H₂O Molecule

Distance both O-H Bonds are Stretched (angstrom)

- Ground State
- n=1
- $^{\wedge}$ n=2
- \times n=3
- x n=4
- n=5
- + n = 6
- n=7
- n=8
- n=9
- n=10

Quantum Chemistry Calculations

Student Investigator: Juri Yanase

Computer Science Dept.,

Queens College of the City University of New York

Mentor: Dr. Igor Eberstein

NASA Center for Computational Science, Code 931

Three Quantum Chemistry Software Packages:

1) Gaussian98

- Gaussian Inc.
- Ab-initio calculations

2) GAMESS

- Gordon research group at Iowa State University
- Ab-initio calculations

3) Dalton

- University of Oslo, Norway
- Ab-initio calculations (Self-Consistent Field (SCF), Møller-Plesset Perturbation Theory (MP2), or Multi-Configuration Self Consistent Field (MCSCF) wave functions)

Z-matrix

Example of hydrogen peroxide H₂O₂

#T HF/STO-3G Opt Test

H₂O Calculations

H2O Calculations				
Reference	Method/Basis Set	Energy(hartree)		
Gaussian98	HF/STO-3G	-74.961		
GAMESS	RHF, MP2/3-21G	-75.585		
Scheiner et al.	SVWN/6-31G**	-75.852		
Scheiner et al.	SVWN/UCC	-75.907		
Gaussian98	HF/6-31G*	-76.012		
DALTON	SCF/cc-pVDZ	-76.026		
Harrison, Handy	CISD/DZ	-76.150		
Harrison, Handy	FCI/DZ	-76.158		
Frisch et al.	MP2/6-31G**	-76.199		
Gauss, Cremer	MP2/6-31G**	-76.205		
Frisch et al.	MP2/6-31G**	-76.219		
Frisch et al.	MP2/DZP	-76.257		
Scuseria, Schaefer	CISD/DZP	-76.258		
Experimental Values		-76.480		

Levine, Ira N. "Quantum Chemistry", Prentice Hall, (2000)

Software

Gaussian98:

Commercial availability and supported.

GAMESS:

- Run in both serial and parallel mode.
- Freely distributed.
- Has graphical capabilities on Macintosh platform.

DALTON:

- Run in both serial and parallel mode.
- Freely distributed.
- Most recent and advanced.

Capabilities

- •These packages enable us to determine energy and wavefunction for systems which cannot be solved analytically.
- Because of commercial availability and support,
 Gaussian98 is user-friendly.
- •Since GAMESS and DALTON run in both serial and parallel mode, they are able to handle more CPU intensive calculations. However, they are not user-friendly and not supported.

Computational Costs

•The better approximates, the more computationally difficult and more expensive.

	Basis	Electron Correlation — 🛌							
	Set Type	HF	MP2	MP3	MP4	QCISD(T)	Full CI		
(ex., STO-3G)	Minimal								
(ex., 3-21G)	Split- valence								
(ex., 6-31G*)	Polarized						[
(ex., 6-31+G(d))) Diffuse						 		
	High Ang Moment						[
	ı			_	ı				
	∞	HF Limit						Schroedinger • Equation	

The Reality of Tomorrow

Engineering Applications of Quantum mechanical software:

Damage to Laser Mirrors.

Infrared Diagnostics of Planetary Atmospheres.

Laser Mirrors

- Substrate for laser mirrors is fused quartz (SiO2)n
- Adsorbed layer of Silica (Si(OH)4)n
- Trace amounts of cleaning fluids such as methanol CH3OH, ethanol C2H5OH, benzene, etc.

Radiant Energy Absorption

- Absorption via natural dipole moment
- Absorption via induced dipole moment
- Enhanced absorption via heterodyne effects
- Excessive absorption damages mirror surfaces and degrades laser performance

Status Report on Mirror Damage

- Have begun to develop a strategy to calculate radiative energy damage to laser mirrors.
- Have learned to use some of the software needed for the above calculation strategy.
- This is only the beginning, and much remains to be done.

Infrared Diagnostics of Planetary Atmospheres

- Calculate infrared absorption cross-sections for planetary atmosphere molecules when experimental data is of poor quality or non-existent.
- Work is in a planning stage for Cassini

Summary

- Introduction
- Ashley Thrall work with Gaussian_98
- Juri Yanase work with massively parallel GAMESS and massively parallel DALTON
- Lasers in Space: Problems with mirrors and windows.
- Infrared diagnostics of planetary atmospheres.